Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Genes (Basel) ; 14(10)2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37895204

RESUMO

(1) Background: Mutations in NFκB1, a transcriptional regulator of immunomodulating proteins, are a known cause of inborn errors of immunity. Our proband is a 22-year-old male with a diagnosis of common variable immunodeficiency (CVID), cytopenias with massive splenomegaly, and nodular regenerative hyperplasia of the liver. Genetic studies identified a novel, single-point mutation variant in NFκB1, c. T638A p. V213E. (2) Methods: Next-generation panel sequencing of the patient uncovered a novel single-point mutation in the NFκB1 gene that was modeled using the I-TASSER homology-modeling software, and molecular dynamics were assessed using the YASARA2 software (version 20.14.24). (3) Results: This variant replaces valine with glutamic acid at position 213 in the NFκB1 sequence. Molecular modeling and molecular dynamic studies showed altered dynamics in and around the rel homology domain, ankyrin regions, and death domain of the protein. We postulate that these changes alter overall protein function. (4) Conclusions: This case suggests the pathogenicity of a novel variant using protein-modeling techniques and molecular dynamic simulations.


Assuntos
Família , Fígado , Masculino , Humanos , Adulto Jovem , Adulto , Mutação
2.
J Transl Med ; 21(1): 410, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353797

RESUMO

BACKGROUND: In the United States, rare disease (RD) is defined as a condition that affects fewer than 200,000 individuals. Collectively, RD affects an estimated 30 million Americans. A significant portion of RD has an underlying genetic cause; however, this may go undiagnosed. To better serve these patients, the Mayo Clinic Program for Rare and Undiagnosed Diseases (PRaUD) was created under the auspices of the Center for Individualized Medicine (CIM) aiming to integrate genomics into subspecialty practice including targeted genetic testing, research, and education. METHODS: Patients were identified by subspecialty healthcare providers from 11 clinical divisions/departments. Targeted multi-gene panels or custom exome/genome-based panels were utilized. To support the goals of PRaUD, a new clinical service model, the Genetic Testing and Counseling (GTAC) unit, was established to improve access and increase efficiency for genetic test facilitation. The GTAC unit includes genetic counselors, genetic counseling assistants, genetic nurses, and a medical geneticist. Patients receive abbreviated point-of-care genetic counseling and testing through a partnership with subspecialty providers. RESULTS: Implementation of PRaUD began in 2018 and GTAC unit launched in 2020 to support program expansion. Currently, 29 RD clinical indications are included in 11 specialty divisions/departments with over 142 referring providers. To date, 1152 patients have been evaluated with an overall solved or likely solved rate of 17.5% and as high as 66.7% depending on the phenotype. Noteworthy, 42.7% of the solved or likely solved patients underwent changes in medical management and outcome based on genetic test results. CONCLUSION: Implementation of PRaUD and GTAC have enabled subspecialty practices advance expertise in RD where genetic counselors have not historically been embedded in practice. Democratizing access to genetic testing and counseling can broaden the reach of patients with RD and increase the diagnostic yield of such indications leading to better medical management as well as expanding research opportunities.


Assuntos
Doenças Raras , Doenças não Diagnosticadas , Estados Unidos , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Doenças Raras/terapia , Atenção Terciária à Saúde , Medicina Genômica , Testes Genéticos , Aconselhamento Genético
3.
Am J Hum Genet ; 110(6): 989-997, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37167966

RESUMO

Statins are a mainstay intervention for cardiovascular disease prevention, yet their use can cause rare severe myopathy. HMG-CoA reductase, an essential enzyme in the mevalonate pathway, is the target of statins. We identified nine individuals from five unrelated families with unexplained limb-girdle like muscular dystrophy and bi-allelic variants in HMGCR via clinical and research exome sequencing. The clinical features resembled other genetic causes of muscular dystrophy with incidental high CPK levels (>1,000 U/L), proximal muscle weakness, variable age of onset, and progression leading to impaired ambulation. Muscle biopsies in most affected individuals showed non-specific dystrophic changes with non-diagnostic immunohistochemistry. Molecular modeling analyses revealed variants to be destabilizing and affecting protein oligomerization. Protein activity studies using three variants (p.Asp623Asn, p.Tyr792Cys, and p.Arg443Gln) identified in affected individuals confirmed decreased enzymatic activity and reduced protein stability. In summary, we showed that individuals with bi-allelic amorphic (i.e., null and/or hypomorphic) variants in HMGCR display phenotypes that resemble non-genetic causes of myopathy involving this reductase. This study expands our knowledge regarding the mechanisms leading to muscular dystrophy through dysregulation of the mevalonate pathway, autoimmune myopathy, and statin-induced myopathy.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Doenças Musculares , Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Ácido Mevalônico , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Doenças Musculares/genética , Oxirredutases , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/efeitos adversos
4.
Parkinsonism Relat Disord ; 105: 149-153, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36396537

RESUMO

Sporadic, adult-onset cerebellar ataxia is a disease with multiple etiologies. In addition to cortical cerebellar atrophy (CCA), which is often used for the pathological diagnosis, other terms such as idiopathic late-onset cerebellar ataxia (ILOCA) and sporadic adult-onset ataxia of unknown etiology (SAOA) have been used to refer to this disorder. These names describe key features of the disease, including degeneration limited to the cerebellar cortex (with or without secondary involvement of inferior olivary nuclei), a slowly progressive ataxia, and absence of a clear etiology, such as multiple system atrophy, as well as paraneoplastic, autoimmune, infectious and inherited ataxias. In this Point of View article, we describe two patients with sporadic, adult-onset ataxia with rapidly progressive disease course in addition to extracerebellar symptoms resembling prion disease, including the reevaluation of one patient who was previously reported. Pathological findings are mostly consistent with CCA, but also have degenerative changes in the thalamus. Whole genome sequencing in two patients with rapidly progressive CCA did not reveal any pathogenic variants associated with cerebellar ataxia. Although the underlying etiology behind rapidly progressive CCA is unknown, we suggest that the unique combination of clinical and pathological features of CAA with a short disease course defines a new disease entity, rapidly progressive cerebellar cortical and thalamic degeneration. This viewpoint article draws attention to this rare sporadic cerebellar ataxia with the hope that highlighting clinical and pathologic findings in a typical case will lead to improved recognition and research.


Assuntos
Ataxia Cerebelar , Atrofia de Múltiplos Sistemas , Degenerações Espinocerebelares , Adulto , Humanos , Ataxia Cerebelar/etiologia , Ataxia , Cerebelo
6.
Mol Genet Genomic Med ; 10(7): e1966, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35570467

RESUMO

BACKGROUND: Achalasia-addisonianism-alacrima syndrome, frequently referred to as Allgrove syndrome or Triple A syndrome, is a multisystem disorder resulting from homozygous or compound heterozygous pathogenic variants in the gene encoding aladin (AAAS). Aladin is a member of the WD-repeat family of proteins and is a component of the nuclear pore complex. It is thought to be involved in nuclear import and export of molecules. Here, we describe an individual with a paternally inherited truncating variant and a maternally inherited, novel missense variant in AAAS presenting with alacrima, achalasia, anejaculation, optic atrophy, muscle weakness, dysarthria, and autonomic dysfunction. METHODS: Whole-exome sequencing was performed in the proband, sister, and parents. Variants were confirmed by Sanger sequencing. The localization of aladin to the nuclear pore was assessed in cells expressing the patient variant. RESULTS: Functional testing of the maternally inherited variant, p.(Arg270Pro), demonstrated decreased localization of aladin to the nuclear pore in cells expressing the variant, indicating a deleterious effect. Follow-up testing in the proband's affected sister revealed that she also inherited the biallelic AAAS variants. CONCLUSIONS: Review of the patient's clinical, pathological, and genetic findings resulted in a diagnosis of Triple A syndrome.


Assuntos
Insuficiência Adrenal , Acalasia Esofágica , Insuficiência Adrenal/genética , Acalasia Esofágica/genética , Feminino , Humanos , Proteínas do Tecido Nervoso/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética
8.
J Med Genet ; 59(9): 865-877, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34815299

RESUMO

BACKGROUND: Musculocontractural Ehlers-Danlos syndrome is caused by biallelic loss-of-function variants in CHST14 (mcEDS-CHST14) or DSE (mcEDS-DSE). Although 48 patients in 33 families with mcEDS-CHST14 have been reported, the spectrum of pathogenic variants, accurate prevalence of various manifestations and detailed natural history have not been systematically investigated. METHODS: We collected detailed and comprehensive clinical and molecular information regarding previously reported and newly identified patients with mcEDS-CHST14 through international collaborations. RESULTS: Sixty-six patients in 48 families (33 males/females; 0-59 years), including 18 newly reported patients, were evaluated. Japanese was the predominant ethnicity (27 families), associated with three recurrent variants. No apparent genotype-phenotype correlation was noted. Specific craniofacial (large fontanelle with delayed closure, downslanting palpebral fissures and hypertelorism), skeletal (characteristic finger morphologies, joint hypermobility, multiple congenital contractures, progressive talipes deformities and recurrent joint dislocation), cutaneous (hyperextensibility, fine/acrogeria-like/wrinkling palmar creases and bruisability) and ocular (refractive errors) features were observed in most patients (>90%). Large subcutaneous haematomas, constipation, cryptorchidism, hypotonia and motor developmental delay were also common (>80%). Median ages at the initial episode of dislocation or large subcutaneous haematoma were both 6 years. Nine patients died; their median age was 12 years. Several features, including joint and skin characteristics (hypermobility/extensibility and fragility), were significantly more frequent in patients with mcEDS-CHST14 than in eight reported patients with mcEDS-DSE. CONCLUSION: This first international collaborative study of mcEDS-CHST14 demonstrated that the subtype represents a multisystem disorder with unique set of clinical phenotypes consisting of multiple malformations and progressive fragility-related manifestations; these require lifelong, multidisciplinary healthcare approaches.


Assuntos
Anormalidades Múltiplas , Síndrome de Ehlers-Danlos , Anormalidades Múltiplas/genética , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Feminino , Estudos de Associação Genética , Humanos , Masculino , Fenótipo , Sulfotransferases/genética
9.
Neurol Genet ; 7(6): e613, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34790866

RESUMO

BACKGROUND AND OBJECTIVES: Purine-rich element-binding protein A (PURA) gene encodes Pur-α, a conserved protein essential for normal postnatal brain development. Recently, a PURA syndrome characterized by intellectual disability, hypotonia, epilepsy, and dysmorphic features was suggested. The aim of this study was to define and expand the phenotypic spectrum of PURA syndrome by collecting data, including EEG, from a large cohort of affected patients. METHODS: Data on unpublished and published cases were collected through the PURA Syndrome Foundation and the literature. Data on clinical, genetic, neuroimaging, and neurophysiologic features were obtained. RESULTS: A cohort of 142 patients was included. Characteristics of the PURA syndrome included neonatal hypotonia, feeding difficulties, and respiratory distress. Sixty percent of the patients developed epilepsy with myoclonic, generalized tonic-clonic, focal seizures, and/or epileptic spasms. EEG showed generalized, multifocal, or focal epileptic abnormalities. Lennox-Gastaut was the most common epilepsy syndrome. Drug refractoriness was common: 33.3% achieved seizure freedom. We found 97 pathogenic variants in PURA without any clear genotype-phenotype associations. DISCUSSION: The PURA syndrome presents with a developmental and epileptic encephalopathy with characteristics recognizable from neonatal age, which should prompt genetic screening. Sixty percent have drug-resistant epilepsy with focal or generalized seizures. We collected more than 90 pathogenic variants without observing overt genotype-phenotype associations.

10.
Mol Genet Genomic Med ; 9(10): e1799, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34510819

RESUMO

BACKGROUND: Biallelic pathogenic variants in HTRA1 cause CARASIL. More recently, monoallelic variants have been associated with the autosomal dominant disorder CADASIL2 but not all carriers develop disease manifestations. We describe the clinicoradiologic and mutation spectrum of four new CADASIL2 individuals. METHODS: Medical records at Mayo Clinic between 2013 and 2020 were retrospectively reviewed to identify patients with cerebral small vessel disease related to monoallelic HTRA1 variants. RESULTS: Four patients met the study inclusion criteria for cerebral small vessel disease related to HTRA1 monoallelic variants. The mean age at onset of first clinical stroke was 51.25 years (range 41-64 years). The mean disease duration was 6.5 years (range 4-12). All individuals had recurrent strokes within the duration of follow-up with a mean number of strokes per patient being 5.5 (range 2-12). Three individuals had leukoencephalopathy with brain stem involvement. Microhemorrhages were seen on brain MRI in three patients. HTRA1 monoallelic variants identified in our cohort were missense variants in three patients and a novel frameshift variation in one patient. Interestingly, two of these missense variants were previously reported in an autosomal recessive pattern of inheritance and here are associated with a dominant effect. CONCLUSIONS: Clinicoradiologic characteristics of heterozygous HTRA1-related CSVD may overlap with sporadic CSVD. Heterozygous HTRA1 variants can contribute to dominant or recessive disease mechanisms.


Assuntos
Alelos , Doenças de Pequenos Vasos Cerebrais/diagnóstico , Doenças de Pequenos Vasos Cerebrais/genética , Heterogeneidade Genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Padrões de Herança , Mutação , Adulto , Idoso , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem , Fenótipo , Radiografia
11.
Parkinsonism Relat Disord ; 89: 151-154, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34303201

RESUMO

INTRODUCTION: Accumulation of polyglutamine (polyQ) ataxin-3 (ATXN3) contributes to the pathobiology of spinocerebellar ataxia type 3 (SCA3). Recently, we showed that polyQ ATXN3 is elevated in the plasma and cerebrospinal fluid (CSF) of SCA3 patients, and has the potential to serve as a biological marker for this disease [1]. Based on these findings, we investigated whether polyQ ATXN3 can also be detected in urine samples from SCA3 patients. METHODS: We analyzed urine samples from 30 SCA3 subjects (including one pre-symptomatic subject), 35 subjects with other forms of ataxia, and 37 healthy controls. To quantify polyQ ATXN3 protein levels, we used our previously developed immunoassay. RESULTS: PolyQ ATXN3 can be detected in the urine of SCA3 patients, but not in urine samples from healthy controls or other forms of ataxia. There was a significant statistical association between polyQ ATXN3 levels in urine samples and those in plasma. Further, the levels of polyQ ATXN3 urine associated with an earlier age of SCA3 disease onset. CONCLUSION: As clinical trials for SCA3 advance, urine polyQ ATXN3 protein has potential to be a useful, non-invasive and inexpensive biomarker for SCA3.


Assuntos
Ataxina-3/urina , Doença de Machado-Joseph/urina , Peptídeos/urina , Proteínas Repressoras/urina , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino
12.
Neuron ; 109(2): 241-256.e9, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33220177

RESUMO

Autosomal-recessive cerebellar hypoplasia and ataxia constitute a group of heterogeneous brain disorders caused by disruption of several fundamental cellular processes. Here, we identified 10 families showing a neurodegenerative condition involving pontocerebellar hypoplasia with microcephaly (PCHM). Patients harbored biallelic mutations in genes encoding the spliceosome components Peptidyl-Prolyl Isomerase Like-1 (PPIL1) or Pre-RNA Processing-17 (PRP17). Mouse knockouts of either gene were lethal in early embryogenesis, whereas PPIL1 patient mutation knockin mice showed neuron-specific apoptosis. Loss of either protein affected splicing integrity, predominantly affecting short and high GC-content introns and genes involved in brain disorders. PPIL1 and PRP17 form an active isomerase-substrate interaction, but we found that isomerase activity is not critical for function. Thus, we establish disrupted splicing integrity and "major spliceosome-opathies" as a new mechanism underlying PCHM and neurodegeneration and uncover a non-enzymatic function of a spliceosomal proline isomerase.


Assuntos
Proteínas de Ciclo Celular/genética , Doenças Cerebelares/genética , Microcefalia/genética , Mutação/genética , Peptidilprolil Isomerase/genética , Fatores de Processamento de RNA/genética , Spliceossomos/genética , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/química , Doenças Cerebelares/complicações , Doenças Cerebelares/diagnóstico por imagem , Estudos de Coortes , Feminino , Técnicas de Inativação de Genes/métodos , Células HEK293 , Transtornos Heredodegenerativos do Sistema Nervoso/complicações , Transtornos Heredodegenerativos do Sistema Nervoso/diagnóstico por imagem , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microcefalia/complicações , Microcefalia/diagnóstico por imagem , Linhagem , Peptidilprolil Isomerase/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Fatores de Processamento de RNA/química
13.
Sci Adv ; 6(49)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33268356

RESUMO

Although somatic mutations in Histone 3.3 (H3.3) are well-studied drivers of oncogenesis, the role of germline mutations remains unreported. We analyze 46 patients bearing de novo germline mutations in histone 3 family 3A (H3F3A) or H3F3B with progressive neurologic dysfunction and congenital anomalies without malignancies. Molecular modeling of all 37 variants demonstrated clear disruptions in interactions with DNA, other histones, and histone chaperone proteins. Patient histone posttranslational modifications (PTMs) analysis revealed notably aberrant local PTM patterns distinct from the somatic lysine mutations that cause global PTM dysregulation. RNA sequencing on patient cells demonstrated up-regulated gene expression related to mitosis and cell division, and cellular assays confirmed an increased proliferative capacity. A zebrafish model showed craniofacial anomalies and a defect in Foxd3-derived glia. These data suggest that the mechanism of germline mutations are distinct from cancer-associated somatic histone mutations but may converge on control of cell proliferation.


Assuntos
Histonas , Doenças Neurodegenerativas , Animais , Fatores de Transcrição Forkhead/genética , Mutação em Linhagem Germinativa , Histonas/genética , Histonas/metabolismo , Humanos , Doenças Neurodegenerativas/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
14.
Sci Transl Med ; 12(566)2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087504

RESUMO

Spinocerebellar ataxia type 3 (SCA3), caused by a CAG repeat expansion in the ataxin-3 gene (ATXN3), is characterized by neuronal polyglutamine (polyQ) ATXN3 protein aggregates. Although there is no cure for SCA3, gene-silencing approaches to reduce toxic polyQ ATXN3 showed promise in preclinical models. However, a major limitation in translating putative treatments for this rare disease to the clinic is the lack of pharmacodynamic markers for use in clinical trials. Here, we developed an immunoassay that readily detects polyQ ATXN3 proteins in human biological fluids and discriminates patients with SCA3 from healthy controls and individuals with other ataxias. We show that polyQ ATXN3 serves as a marker of target engagement in human fibroblasts, which may bode well for its use in clinical trials. Last, we identified a single-nucleotide polymorphism that strongly associates with the expanded allele, thus providing an exciting drug target to abrogate detrimental events initiated by mutant ATXN3. Gene-silencing strategies for several repeat diseases are well under way, and our results are expected to improve clinical trial preparedness for SCA3 therapies.


Assuntos
Doença de Machado-Joseph , Alelos , Ataxina-3/genética , Humanos , Doença de Machado-Joseph/genética , Neurônios , Proteínas Repressoras/genética
15.
Hum Mutat ; 41(8): 1425-1434, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32442335

RESUMO

LARS2 variants are associated with Perrault syndrome, characterized by premature ovarian failure and hearing loss, and with an infantile lethal multisystem disorder: Hydrops, lactic acidosis, sideroblastic anemia (HLASA) in one individual. Recently we reported LARS2 deafness with (ovario) leukodystrophy. Here we describe five patients with a range of phenotypes, in whom we identified biallelic LARS2 variants: three patients with a HLASA-like phenotype, an individual with Perrault syndrome whose affected siblings also had leukodystrophy, and an individual with a reversible mitochondrial myopathy, lactic acidosis, and developmental delay. Three HLASA cases from two unrelated families were identified. All were males with genital anomalies. Two survived multisystem disease in the neonatal period; both have developmental delay and hearing loss. A 55-year old male with deafness has not displayed neurological symptoms while his female siblings with Perrault syndrome developed leukodystrophy and died in their 30s. Analysis of muscle from a child with a reversible myopathy showed reduced LARS2 and mitochondrial complex I levels, and an unusual form of degeneration. Analysis of recombinant LARS2 variant proteins showed they had reduced aminoacylation efficiency, with HLASA-associated variants having the most severe effect. A broad phenotypic spectrum should be considered in association with LARS2 variants.


Assuntos
Aminoacil-tRNA Sintetases/genética , Disgenesia Gonadal 46 XX/genética , Perda Auditiva Neurossensorial/genética , Miopatias Mitocondriais/genética , Acidose Láctica/genética , Adulto , Anemia Sideroblástica/genética , Edema/genética , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Fenótipo , Estrutura Terciária de Proteína
16.
Pediatr Hematol Oncol ; 37(5): 431-437, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32166993

RESUMO

D-2-hydroxyglutaric aciduria (D-2-HGA) is a rare metabolic disorder characterized by developmental delay, hypotonia, and bi-allelic mutations in D-2-hydroxyglutarate dehydrogenase (D2HGDH) or a single gain-of-function mutation in isocitrate dehydrogenase 2 (IDH2). Metaphyseal chondromatosis with D-2-hydroxyglutaric aciduria (MC-HGA) is a type of D-2-HGA that has been previously reported in ten patients (OMIM 614875), three of whom had somatic mosaicism for R132 variants in isocitrate dehydrogenase 1 (IDH1). We describe a 3-year-old boy with MC-HGA who subsequently developed acute myeloid leukemia (AML) and was found to have an IDH1 R132C mutation in a leukemic bone marrow sample. Further testing revealed presence of somatic mosaicism for IDH1 R132C variant, suggesting an association of IDH1 in inducing myeloid leukemogenesis.


Assuntos
Encefalopatias Metabólicas Congênitas/genética , Condromatose/genética , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Encefalopatias Metabólicas Congênitas/complicações , Pré-Escolar , Condromatose/complicações , Condromatose/tratamento farmacológico , Transplante de Células-Tronco Hematopoéticas , Humanos , Leucemia Mieloide Aguda/complicações , Leucemia Mieloide Aguda/tratamento farmacológico , Masculino , Mutação , Resultado do Tratamento
17.
J Clin Endocrinol Metab ; 105(1)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31872862

RESUMO

CONTEXT: Single-minded homologue 1 (SIM1) is a transcription factor with several physiological and developmental functions. Haploinsufficiency of SIM1 is associated with early-onset obesity with or without Prader-Willi-like (PWL) features and may exhibit incomplete penetrance. CASE DESCRIPTION: Next-generation sequencing was performed for 2 male patients with obesity, including 1 man presenting with intellectual disability (ID), body mass index (BMI) of 47.4, and impulse-control disorder, and the other man with early obesity (BMI of 36); sequencing revealed a missense variant in SIM1 (c.2144G>T; p.G715V) in both individuals. Previous studies have identified several disease-associated variants that fall near the p.G715V variant within the C-terminal domain of SIM1. We examined p.G715V variant stability and activity in a doxycycline-inducible stable cell line transfected with an artificial reporter construct and either ARNT or ARNT2 as a partner protein. CONCLUSIONS: Functional testing of the p.G715V variant revealed a significant reduction in SIM1-mediated transcriptional activity. We also generated the first ab initio hybrid protein model for full-length SIM1 to show the predicted spatial relationship between p.G715V and other previously described variants in this region and identified a putative mutation hotspot within the C-terminus. Significant clinical heterogeneity has been observed in patients with SIM1 variants, particularly with regards to the PWL phenotype. In the patient with ID, a second variant of uncertain significance in CHD2 was identified that may contribute to his ID and behavioral disturbances, emphasizing the role of additional genetic modifiers.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Mutação de Sentido Incorreto , Obesidade/genética , Proteínas Repressoras/genética , Adulto , Substituição de Aminoácidos/genética , Estudos de Associação Genética , Ácido Glutâmico/genética , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/diagnóstico , Síndrome de Prader-Willi/complicações , Síndrome de Prader-Willi/genética , Valina/genética
18.
Am J Hum Genet ; 105(6): 1237-1253, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31785787

RESUMO

We report an early-onset autosomal-recessive neurological disease with cerebellar atrophy and lysosomal dysfunction. We identified bi-allelic loss-of-function (LoF) variants in Oxidative Resistance 1 (OXR1) in five individuals from three families; these individuals presented with a history of severe global developmental delay, current intellectual disability, language delay, cerebellar atrophy, and seizures. While OXR1 is known to play a role in oxidative stress resistance, its molecular functions are not well established. OXR1 contains three conserved domains: LysM, GRAM, and TLDc. The gene encodes at least six transcripts, including some that only consist of the C-terminal TLDc domain. We utilized Drosophila to assess the phenotypes associated with loss of mustard (mtd), the fly homolog of OXR1. Strong LoF mutants exhibit late pupal lethality or pupal eclosion defects. Interestingly, although mtd encodes 26 transcripts, severe LoF and null mutations can be rescued by a single short human OXR1 cDNA that only contains the TLDc domain. Similar rescue is observed with the TLDc domain of NCOA7, another human homolog of mtd. Loss of mtd in neurons leads to massive cell loss, early death, and an accumulation of aberrant lysosomal structures, similar to what we observe in fibroblasts of affected individuals. Our data indicate that mtd and OXR1 are required for proper lysosomal function; this is consistent with observations that NCOA7 is required for lysosomal acidification.


Assuntos
Atrofia/patologia , Doenças Cerebelares/patologia , Lisossomos/patologia , Proteínas Mitocondriais/metabolismo , Doenças do Sistema Nervoso/patologia , Estresse Oxidativo , Adolescente , Adulto , Animais , Atrofia/genética , Atrofia/metabolismo , Doenças Cerebelares/genética , Doenças Cerebelares/metabolismo , Criança , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Lisossomos/metabolismo , Masculino , Proteínas Mitocondriais/genética , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Linhagem , Fenótipo , Adulto Jovem
19.
Ann Clin Transl Neurol ; 6(10): 1980-1988, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509352

RESUMO

OBJECTIVE: To characterize the natural history and clinical features of myopathies caused by mono-allelic, dominantly acting pathogenic variants in COL12A1. METHODS: Patients with dominant COL12A1-related myopathies were characterized by history and clinical examination, muscle imaging, and genetic analysis. Pathogenicity of the variants was assessed by immunostaining patient-derived dermal fibroblast cultures for collagen XII. RESULTS: Four independent families with childhood-onset weakness due to novel, dominantly acting pathogenic variants in COL12A1 were identified. Adult patients exhibited distal-predominant weakness. Three families carried dominantly acting glycine missense variants, and one family had a heterozygous, intragenic, in-frame deletion of exon 52 of COL12A1. All pathogenic variants resulted in increased intracellular retention of collagen XII in patient-derived fibroblasts as well as loss of extracellular, fibrillar collagen XII deposition. Since haploinsufficiency for COL12A1 is largely clinically asymptomatic, we designed and evaluated small interfering RNAs (siRNAs) that specifically target the mutant allele containing the exon 52 deletion. Immunostaining of the patient fibroblasts treated with the siRNA showed a near complete correction of collagen XII staining patterns. INTERPRETATION: This study characterizes a distal myopathy phenotype in adults with dominant COL12A1 pathogenic variants, further defining the phenotypic spectrum and natural history of COL12A1-related myopathies. This work also provides proof of concept of a precision medicine treatment approach by proposing and validating allele-specific knockdown using siRNAs specifically designed to target a patient's dominant COL12A1 disease allele.


Assuntos
Colágeno Tipo XII/genética , Miopatias Distais/genética , Genes Dominantes/genética , RNA Interferente Pequeno/uso terapêutico , Adulto , Idade de Início , Técnicas de Cultura de Células , Pré-Escolar , Feminino , Fibroblastos , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Medicina de Precisão , Estudo de Prova de Conceito , Sequenciamento do Exoma
20.
Genet Med ; 21(11): 2663, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31267042

RESUMO

In the Acknowledgements section of the paper the authors neglected to mention that the study was supported by a grant from the National Human Genome Research Institute (NHGRI) UM1HG007301 (S.H., M.L.T.). In addition, the award of MD was associated with the authors Michelle L. Thompson and Susan Hiatt instead of PhD. The PDF and HTML versions of the Article have been modified accordingly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...